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Overview 

• Critical phenomena,  

• fractals, 

• Conformal Invariance 

• Classification of critical phenomena by 
Conformal Field Theory 



General references 

Specific references have been given in the main text of my 
lecture notes but for students who like to read reviews on the 
topics covered in these lectures the following references are 
suggested: 

Critical Phenomena : 

• Sornette, D. Critical phenomena in natural sciences: chaos, 
fractals, self-organization and disorder: concepts and tools. 
Springer Science & Business Media, 2006. 

• Stanley, H. Eugene. "Scaling, universality, and renormalization: 
Three pillars of modern critical phenomena." Reviews of 
modern physics 71.2 (1999): S358. 



General references 

Conformal Field Theory 

• Schellekens, A. N. "Introduction to conformal field 
theory." Fortschritte der Physik/Progress of Physics 44.8 
(1996): 605-705. 

• Francesco, Philippe, Pierre Mathieu, and David 
Sénéchal. Conformal field theory. Springer Science & Business 
Media, 2012. 

The renormalization group 

• Goldenfeld, Nigel. Lectures on phase transitions and the 
renormalization group. CRC Press, 2018. 

 



Overview 

– Critical Phenomena 

– Order parameter, spontaneous symmetry breaking 

– Ergodicity breaking 

– Critical Exponents 

– Universality 

– Scale invariance 

– Renormalization Group 

 

 



Critical Phenomena 

Cagnard de la Tour 1822 
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BenjaminWidom 1960 

Wilson 1970 



Critical Phenomena 

 

Phase Transitions were classified by 
Ehrnfest by their “Order” which is the 
order at which the derivative of free 
energy becomes singular. Today this 
classification is not adopted anymore.  

 
1880-1933 

Paul Ehrenfest 



Liquid vapor Transition 

Matter changes phase  

under change of macroscopic 

variables such as  

temperature,  

pressure , magnetization,.. 

 



• Matter can exist in 
many phases  

liquid, solid, gas, 
Paramagnetic , BEC, .. 

• These phases come to 
an end on an interface, 
this happens due to 
immiscibility of matter 
in different phases  
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Magnetic Phase Diagram 
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Critical Point  

Non zero magnetization 

Second order transition  

In contrast to magnetization,  
the Vapor-Water  transition is first order, 
the order parameter is the density.   
It jumps in value across the phase transition point 
  



Low Temp High Temp 

More Order Less Order 

Less Symmetry More Symmetry 

T=Tc 

Scale invariance at 
the symmetry 
breaking point 
Even larger 
symmetry Conformal  

Order/Disorder transition 



Union of three seemingly different 
concepts 

1. Spontaneous Symmetry breaking 

2. Ergodicity breaking 

3. Renormalization group flow 

 

 



Spontaneous Symmetry Breaking 

• Ginzburg, Landau 1950 

• Bardeen, Cooper and  

Schrieffer 1957  

• Heisenberg, 1959 

• Nambu, (1960) 



Spontaneous symmetry breaking (SSB) 

Symmetry operator S: QUANTUM PHYSICS 

 

[S,H]=0 

 

Vacuum is not symmetric : 

 
Symmetric Symmetry Broken 

S|0> =0  S|0> =|0’>  
 



SSB 

A proton-proton collision event in the CMS experiment 
producing two high-energy photons (red towers). An even 
showing the decay of a Higgs boson but also consistent with 
background Standard Model physics processes.  
(simulation, CERN) 



SSB 

• example of a double well potential is: 

𝑉 𝜑 =
𝑔

4
𝜑4 +

𝑡

2
𝜑2 

For t>0 this potential has one minimum at  
𝜑 = 0 

For t<0 has minima at  

𝜑2 =
−𝑡

𝑔
 

We can choose 𝑡 =
𝑇−𝑇𝑐

𝑇𝑐
 , so that the above conditions 

refer directly to a critical point. 



Spontaneous symmetry breaking 

𝑇 > 𝑇𝑐  𝑇 ≲ 𝑇𝑐  𝑇 < 𝑇𝑐  



Order Parameter for 2d Ising model 
Magnetization  

T 

M 

Tc 

𝑀~ −𝑡 𝛽 , 𝑇 < 𝑇𝑐
𝑀 = 0        , 𝑇 > 𝑇𝑐

 

𝑀 = 𝜑 =
1

𝑁
  𝜎𝑖

𝑛
 Magnetization is 

a good order 
parameter for 
the 
Ferromagnetic/ 
Paramagnetic 
Transition  
For any given 
critical behavior 
finding a good  
order parameter 
is challenging.  



Ergodic Theorem 

Ergodic Theorem: 

Over time the phase space of a dynamical 
system is uniformly covered. 

 

lim
𝑡→∞

1

𝑇
 𝑓 𝑇𝑡𝑥 𝑑𝑡 =

1

𝛺

𝑇

0

 𝑑𝜇 𝑓(𝑝, 𝑞) 

Therefore ensemble averages can be replaced  
with time averages. 



Bunimovich Stadium  

𝑇𝑡: Ω → Ω   𝑡𝜖ℝ 

 

with randomly chosen initial position and 
velocity, over time its position becomes 
uniformly distributed over the whole stadium. 

 



Bunimovich Stadium  
Ergodic hypothesis 

Leonid A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Comm. Math. Phys. 65 
(1979), 295–312 



Animation by Phillipe Roux : blogs.ams.org/visualinsight/2016/11/15/bunimovich-stadium/ 



Problems with the Ergodic theorem 

• In fact a path cannot 
cover a space so we can 
only hope that it comes 
close to a point. 

• Liouville’s theorem 
states that the volume 
remains constant, so 
how can it cover the 
whole phase space? 

The solution is coarse 
graining 



Coarse graining 

We don’t talk about points in the phase space 
rather neiborhoods at scales given by l. 

 

Once the flow passes through 

a cell we take that as counted. 

 
𝑑𝑠

𝑑𝑡
=
𝑑

𝑑𝑡
k Log Ω ≥ 0 

 



Ergodic Theorem 

• Symmetry breaking means that the Phase 
space is no longer path connected, so Ergodic 
theorem must fail too 

 



Critical exponents 

• Changes of the physical observables near the 
critical point are given by power laws:  

𝑀~ (−𝑡) 𝛽 

 

𝑡 =
𝑇 − 𝑇𝑐
𝑇𝑐

 

here M is magnetization, 𝑇 temperature, 𝑇𝑐  critical 
temperature, and t is called the reduced temperature 



Critical exponents 

Exponent Physical quantity expression 

a Specific heat (at zero field) 𝐶𝑣~𝑡
−𝛼  

b 
Order Parameter (below Tc ,zero field) 𝑚~ (−𝑡)𝛽 

g Susceptibility  𝜒~ 𝑡𝛾 

d 
Order Parameter at Tc  (non zero field )  𝑚 ~ ℎ1 𝛿  

h 
Correlation function at Tc 𝐶 𝑟 ~ 𝑟2−𝑑−𝜂 

n Correlation length  𝜉~𝑡−𝜈 

z 
Time scale 𝜏 𝜏~𝜉𝑧 



Universality 

critical 
exponents of 
many seemingly 
very different 
physical systems, 
are the same 

E. A. Guggenheim, J. Chem. Phys., vol. 13, p. 253, 1945. 



Scale invariance  

Many spin systems within statistical mechanics are 
characterized by a correlation length 𝜉, which is the 
scale by which two random variables remain in 
“contact” : 

 

C(r) = 𝜑(𝑟)𝜑(0) ~𝑒
− 𝑟 𝜉  

 

However near the critical point we know that the 
correlation length diverges 𝜉~𝑡−𝜈 



Scale invariance  

In this situation , distributions and correlations 
take on a power law format : 

 

𝜑(𝑟)𝜑(0) ~𝑟2−𝑑−𝜂~𝑟−𝜂 (for d=2 T=Tc) 

or 
𝐶𝑣 𝜆 𝑡 ~ 𝜆

−𝛼 𝐶𝑣  𝑡  



Scaling relations 

𝐹 ℎ, 𝑡 = 𝑡2−𝛼 𝑔(ℎ𝑡Δ) 

then:  

𝐶𝑣 =
𝜕2𝑓

𝜕𝑡2
~𝑡−𝛼 

𝑚 =
𝜕𝑓

𝜕ℎ
~𝑡2−𝛼−Δ 

𝜒 =
𝜕2𝑓

𝜕ℎ2
~𝑡−2+𝛼+Δ 

Resulting in: 
𝛼 + 2𝛽 + 𝛾 = 2 



Test of scaling relations  

  
  Xe Binary mixture 

a 0 0.113   

b 0.35  0.32 

g 1.3  1.239  

d 4.2 4.85  

h 0.1  0.017 

n 0.57  0.625  

a+2b+g=2 2.00  1.99  

a+b d+b=2 1.82  2.00  

h+g/n=2 2.38  2.00  

a+nd=2 1.71  1.99  

A. lense and M. Lagues, scale invariance: From Phase 
transitions to Turbulance. Berlin: Springer, 2008. 



The Renormalization Group (RG) 

Dynamics at scale 𝜆 : 

 

𝐻 = 𝐶𝑛 𝜆

𝑛

𝑂𝑛  



The RG Equation 

𝜆
𝑑𝐶𝑛
𝑑𝜆
=  𝛽𝑛(𝐶 , 𝜆) 

The beta functions 𝛽𝑛 will be given by the 
system in question. 

 

It is possible that the beta functions admit a 
fixed point: 

𝛽𝑛 𝐶
∗, 𝜆 = 0 

 



A typical RG flow diagram. The Wilson-Fisher (WF) point is attractive in 
the IR limit in one direction only (blue line), the critical manifold. For the 
Gaussian point all directions are repulsive so no critical manifold exists. 
The black lines depict experimental observation. 



Near the critical point  

Expand RG equation near the fixed point: 

 
𝛿𝑛 = 𝐶𝑛 − 𝐶

∗
𝑛 

 

𝜆
𝑑𝛿𝑛
𝑑𝜆
=  𝑀𝑛,𝑚𝛿𝑚 +⋯ 

 
𝑀𝑛,𝑚 = 𝜕𝑛𝛽𝑚 

 

 



The RG Equation 

The eigenvalues of 𝑀 are : 
𝜆𝑦𝑛  

 

Where  𝑦𝑛 > 0  relevant operators 

     𝑦𝑛 < 0  irrelevant operators 

     𝑦𝑛 > 0   marginal operators 



Scale invariance of the free energy 

Now scale invariance of physical observables 
requires the free energy to have the form scalig 
form: 

 

𝐹 𝑡, ℎ = 𝑡
𝑑
 𝑦𝑡  f(

ℎ

𝑡
𝑦ℎ
𝑦𝑡 
) 

of course this applies to only systems which 
have just two relevant operators. 



Scale invariance of the free energy 

The two variables which are important are  

• reduced temperature:  𝑡 

• applied magnetic field:  ℎ 

So expanding RG near the Gaussian point we 
must get :  

𝑡 →  𝜆 𝑦𝑡  𝑡 
ℎ →  𝜆 𝑦ℎ  ℎ

 



Scale invariance of the free energy 
implies scaling relations 

A simple calculation with the free energy on 
previous slide will determine the critical exponents. 
e.g. 

𝐶𝑣 =
𝜕2

𝜕𝑇2
F 

Hence at h=0 we have : 
 

𝐶𝑣~𝑡
−𝛼 

𝛼 = 2 −
𝑑

𝑦𝑡
 



Scaling form of the free energy implies 
scaling relations 

This observation has many consequences: 

1-All critical exponents are determined by two 
quantities 𝑦𝑡 and 𝑦ℎ .  

Which means all critical exponents are not 
independent. In fact there are linear relations 
among them e.g. 

𝛼 + 2𝛽 + 𝛾 = 2  

B. Widom, Equation of state in neighborhood of critical point. J. Chem. Phys. 43, 3898 (1965) 



Scaling form of the free energy implies 
scaling relations 

Later Wilson showed that the scaling form of the 
free energy near Tc can be obtained from RG  

 

The full set of scaling relations are:  
𝛼 + 𝑑𝜈 = 2

𝛼 + 2𝛽 + 𝛾 = 2  

𝛽 𝛿 − 1 = 𝛾

𝜈 2 − 𝜂 = 𝛾

 

K.G. Wilson, Phys. Rev. B 4, 3174 (1971); 4, 3184 (1971) 



Scaling form of the free energy implies 
scaling relations 

2. All physical systems that share the same RG 
fixed point will have the same set of critical 
exponents (Universality) . That is the details 
of their interactions are irrelevant (irrelevant 
operators)  

3. For each universality class there exists 
infinitely many physical systems which share 
the same RG fixed point. (they differ in their 
irrelevant operators) 



Next Lecture : fractals ,self-similarity , 
Conformal Field Theory 


