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• Self-similarity 

• Fractals 

• Conformal mapping 

• CFT 

• Classification of critical phenomena 
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Self-Similarity 

phase boundaries near the CP are scale invariant 
curves, may be fractals since they need to be 
self-similar 

 

A geometrical shape is self-similar if it looks 
“almost" the same on any scale.  

 

Fractals are self-similar objects.  



Self-affine vs. Self-similar 

Self-affinity is a feature of a shape which when scaled 
by different amounts in different directions, the same 
shape is returned:  

𝑏𝑦 𝑥 = 𝑦(𝑎 𝑥)  

 

Self-similarity happens when the scaling factors 
in both x and y directions are the same a=b . 

 



Fractals 



Fractals 

curve or geometrical object, each part of which 
has the same statistical character as the whole. 

 

Fixed point of repeated  

Function application 

F(F(….F(x)))  

 

Mandelbrot Set 



Fractal Dimension 

• A fractal curve, has infinite lentgh if 
interpreted as a onedimensional object 

• On the other hand it does not fill the 
embedding space  

• A fractal is by definition a set for which the 
Hausdorff-Besicovitch dimension strictly 
exceeds the topological dimension. 



Koch Snowflake 

A famous example is the Koch Snowflake. The 
scale factors are 3 and 4 

 
The fractal 
dimension of the 
Koch Snowflake 
is log(4)/log(3) ~ 
1.26186  



fractal 

• Hence the Koch Snowflake is not a one 
dimensional object. It is a fractal with 
dimension  𝑑𝑓.  



Length of the Koch Snowflake 

Number of sides at each iteration  
𝑁𝑘 = 4𝑁𝑘−1 = 3. 4

𝑘 

 

Length of a side at each iteration 
𝑠𝑘 = 𝑙 3

𝑘  

 

Total length:  lim
𝑘→∞

𝑁𝑘𝑙

3𝑘
=3𝑙 ∗ (

4

3
)𝑘→ ∞ 



Calculate the fractal dimension using 
correlation methods 

Diffusion Limited 
Aggregate 

Aggregation of particles 
by random walk 

df=1.539.. 



Calculate the fractal dimension using 
correlation methods 

Box counting method ,  

number of boxes in radius R is : 

  

𝑁(𝑅)~𝑅𝑑𝑓  

number of boxes of size a is : 

 

𝑁(𝑅)~𝑎−𝑑𝑓 

Or summing yup 

𝑁 𝑎, 𝑅 ~   (𝑅 𝑎 )𝑑𝑓 



Calculate the fractal dimension using 
correlation methods 

What if the center changes ? 
 
𝐶 𝑟, 𝑥 = 𝜌(𝑥 + 𝑟)𝜌(𝑥)  
 
average density of particles around  
the particle at x 
 

𝐶 𝑟 =  𝐶 𝑟, 𝑥  𝑑𝑥  ~   𝑟𝑑𝑓−2 



Calculate the fractal dimension of 
images 

Density autocorrelation method 
allows us to calculate the fractal 
dimension of any image ! 

Estimate fractal dimension of 
“entities” in 3d 

using gray scales on 2d images of 
them. 

 

df=1.334 

• M Ghafari, M Ranjbar, S Rouhani; “Observation of a crossover in kinetic 
aggregation of Palladium colloids” 

        Applied Surface Science, 2015 , 1143-1149  ; arXiv preprint arXiv:1412.8052 353,  
• Shanmugavadivu, P., and V. Sivakumar. "Fractal dimension based texture analysis of 

digital images." Procedia Engineering 38 (2012): 2981-2986. 

df=2.867 



Hausdorff dimension  

What is also referred to as the “Fractal 
Dimension” of a curve, is usually the Hausdorff 
dimension, or the scale by which the whole 
curve scales as we reduce the size of the 
measuring stick : 

 

𝑁~𝑠𝑑𝑓  



Fractals 

17 

Fractal flow of inhomogeneous fluids over smooth inclined surfaces and determination of their fractal  
dimensions and universality classes 
N Maleki-Jirsaraei, B Ghane-Motlagh, S Baradaran, E Shekarian, S Rouhani 
Journal of Physics: Condensed Matter 17, S1209 

22.1fd

http://scholar.google.com/citations?view_op=view_citation&hl=en&user=WJxqvyIAAAAJ&citation_for_view=WJxqvyIAAAAJ:9yKSN-GCB0IC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=WJxqvyIAAAAJ&citation_for_view=WJxqvyIAAAAJ:9yKSN-GCB0IC
http://scholar.google.com/citations?view_op=view_citation&hl=en&user=WJxqvyIAAAAJ&citation_for_view=WJxqvyIAAAAJ:9yKSN-GCB0IC


Calculation of Hausdorff dimension of 
a shape 

𝑑𝑓 = lim
𝑠 →0
−
log (𝑁)

𝐿𝑜𝑔(𝑠)
 

s 



Fractal dimension: 

𝑑𝑓 = 
log (3)

log (2)
= 1.58. .  𝑑𝑓 = 

log (4)

log (3)
= 1.26. .  



Hurst exponent 

𝑥 𝜆𝑡 = 𝜆𝐻𝑥(𝑡) 

A measure of self similarity in time series.  
𝐻 = 2 − 𝑑𝑓 

Time series classification; 

 𝐻 > 1/2 Long range dependence 

𝐻 = 1/2 Brownian motion 

𝐻 < 1/2 negatively correlated 



 
G. A. Maclachlan et al, The Hurst exponent of Fermi gamma-ray bursts, Monthly Notices of the 

Royal Astronomical Society 436 (2013 )2907-2914 
 

 
 

 



Random fractals: roughly the same  

Random fractal curve 



Scaling  Graphs 

𝑦 𝑎𝑥 = 𝑎 𝑦(𝑥)   self-similar 

 

𝑦 𝑎𝑥 = 𝑏 𝑦 𝑥 ,  𝑏 ≠ 𝑎   self-affine 

𝑒𝑔 𝑌 𝑥 = 𝑐 𝑥3 , 𝑏 = 𝑎−3 

Not Interesting  ! 



Weierstrass function 

𝑦 𝑥 =  𝑏𝑛
𝑛=∞

𝑛=0

Cos(𝑎𝑛𝑥) 

b is positive odd integer such that 

𝑎𝑏 > 1 +
3

2
𝜋 

• Continuous everywhere  

• nowhere differentiable 



Graph of Weierstrass function 

Image wikipedia 



Weierstrass function is self-affine 

𝑏 𝑦 𝑎 𝑥 = 𝑦(𝑥) 
Hausdorff dimension:  
 

𝐷 = 2 + log 𝑏 /log (𝑎) 
 
Clearly 1<D<2 
 
 
 
Hunt, Brian. "The Hausdorff dimension of graphs of Weierstrass functions." Proceedings of the American 

mathematical society 126.3 (1998): 791-800. 



Conformal mapping, holomorphicity 
and Riemann’s theorem  

A conformal transformation is one which 
preserves angles locally. In other words changes 
the metric up to an overall factor: 

 

𝑔𝜇𝜈  →  𝜌 𝑔𝜇𝜈   



Conformal Transformations 

Translations+Rotations+Scale+Inversion 
angles remain unchanged 

𝑔𝜇𝜈  →  𝜌 𝑔𝜇𝜈  



Complex Coordinates 

Existence of scale invariance at the CP may lead to 
conformal invariance, with far reaching 
consequences for critical phenomena.  
 
In 2d things are much easier. Let us begin by 
complexifying the coordinates: 
 

𝑧 = 𝑥 + 𝑖𝑦, 𝑔: 𝑧 → 𝑔 𝑧  
therefore 

𝜕  𝑔 𝑧 = 0 
 



Conformal mappings of the complex 
plane 

Cauchy-Riemann Conditions 
𝑔 𝑧 = 𝑢 𝑥, 𝑦 + 𝑖𝑣 𝑥, 𝑦  

then 

𝜕𝑢

𝜕𝑥
=
𝜕𝑣

𝜕𝑦
  

    
𝜕𝑣

𝜕𝑥
= −
𝜕𝑢

𝜕𝑦
  

or 

𝑖
𝜕𝑔

𝜕𝑥
=
𝜕𝑔

𝜕𝑦
   can be rewritten as 

𝜕

𝜕𝑥
+ 𝑖
𝜕

𝜕𝑦
𝑔 = 0 

Alternatively written as 𝜕 𝑔 = 0, since 𝜕 𝑧 = 0 in other words f is 
not a function of 𝑧 , hence a holomorphic function.  



Conformal mappings of a domain D in 
the complex plane 

𝑧 → 𝑓(𝑧) 

• A holomorphic function is a conformal mapping if 
𝑓′ ≠ 0 𝑜𝑛 𝑤ℎ𝑜𝑙𝑒 𝑜𝑓 𝐷.  

 

• This means that it is one-one and holomorphic. 

 



Conformal transformation 



conformal group 

Conformal transformations form a group named the 
conformal group  

which is an extension of the group of iso-metries of 
space-time.  

 

For the case of Poincare invariance in d dimensions, 
the conformal group is SO(d+2) d>2 

 

When d=2 we have the Mobius group.  



Mobius group 

Mobius transformations: 
 

𝑧 →
𝑎𝑧+𝑏

𝑐𝑧+𝑑
       , ad-bc=1  

 
Are one-one and onto so reversible transformations of the complex 
plane 
 
Inverse map is: 

−𝑑𝑧 + 𝑏

𝑐𝑧 − 𝑎
 

 
  
These transformations form the group SL(2,c). 



Mobius group 

The Mobius transformation includes all the well-known 
isometries of the plane: 

  

translations (a=1, c=0, d=1),                      𝑧 → 𝑧 + 𝑏  

rotations and scaling (b=0, c=0, d=1/a)   𝑧 → 𝑎2𝑧 

inversion (a=0, d=0, b=-1/c)                      𝑧 → −
1

𝑐2𝑧
 



2d Conformal Group 

In physics (d=2) all holomorphic transformations 
of the complex plane become admissible. 

(no need to be bijective) 

 

so one ends up with an infinite dimensional 
symmetry, leading to the Witt and Virasoro 
Algebras. 



Mapping the complex plane onto itself  

Image credit: Wolfram Mathematica 



Solution of some electrostatic problem 

The electric potential v(x,y) on the inside of a semi-disc of radius 
R; such that on the upper part of the disc it has value v=v0, and 
value v=0 on the interval [-R, R]. 

𝑉 𝑤 = 𝑉0(−
2𝜋

3
− 𝑖 log 𝑤 𝑅 ) 

 

 

 
 

Take the branch of log such  

that we are in the (−𝜋,+𝜋) 

sector. 

𝑤 𝑧 =  
𝑧 + 𝑅

𝑧 − 𝑅
 



Sl(2,c) Algebra 

Mobius transformations: 
 

𝑧 →
𝑎𝑧+𝑏

𝑐𝑧+𝑑
= 𝜔(𝑧), ad-bc=1  

Are one-one and onto so reversible. 
 
Inverse map is: 

−𝑑𝜔 + 𝑏

𝑐𝜔 − 𝑎
= 𝑧 

 
  
These transformations form the group SL(2,c). 



Witt Algebra 

Note that sl(2,c) algebra 𝐿0, 𝐿± sits in the center 
of Witt algebra; (look at the Laurant expansion) 

𝐿𝑛 = −𝑧
𝑛+1 𝜕

𝜕𝑧
   

 

[𝐿0, 𝐿±] = ∓𝐿0   

𝐿+, 𝐿− = 2𝐿0   

𝐿𝑛, 𝐿𝑚 = (𝑛 −𝑚) 𝐿𝑛+𝑚  

  



Why Conformal Symmetry 

• We know that critical point (CP) has scale 
invariance 

• We also know that scale invariance + Physical 
theory  leads to conformal invariance (2d) 

• Thus if the “scaling limit” for a lattice model 
holds to each critical point we should be able 
to assign a Conformal Field Theory 

• Conformal symmetry is translations + 
rotations+scaling+inversion 



Scale vs conformal invariance 

Scale invariance plus some physical properties 
implies conformal invariance of the physical system:  

 

a) Conservation of energy-momentum 

b) Unitarity 

c) Locality 

d) Discrete spectrum in scaling dimensions 

 

Has a proof in 2d but may also be true in 4d 
Yu Nakayama. Scale invariance vs conformal invariance. Physics Reports. 2015, Vol. 569, pp. 1-93. 



Scale vs. Conformal invariance 

In 2d the energy-momentum tensor has three 
components. In complex coordinates these are: 

 

T =  Tzz , T  =  Tz𝑧 , Θ =  T𝜇
𝜇
  

  

conservation of energy momentum tensor is: 

 
𝜕 T +  4𝜕Θ =  0 



Scale vs. Conformal invariance 

Scale invariance means that the trace of energy 
momentum tensor vanishes: 

 

Θ =  T𝜇
𝜇
= 0 

  

conservation of energy momentum tensor is: 

 
𝜕 T =  0 

Thus T=T(z) only. 



CFT2 is fully integrable 

• Hence  

𝜕 T =  0 → 𝑇(𝑧)  

In other words we have invariance under 
holomorphic transformations 𝑧 → 𝑓(𝑧).  

Also the theory is fully integrable: 

 
𝜕 T𝑛 =  0      ∀ 𝑛𝜖ℕ 



Scale vs. Conformal invariance 

• Therefore we are able to correspond to every 
CP (scale invariant) a CFT if the conditions 
above hold. 

 

• As we shall see these conditions although 
sufficient but they are not necessary as there 
are examples falling outside of them.  



The scaling limit  

In the limit that the lattice spacing tends to zero 
compared to relevant length scales of the theory (e.g. 
correlation length) we will have a field theory 
corresponding to the statistical physics system.  

 

Example: the Ising model in the scaling limit 
corresponds to the free fermion theory which become 
critical if m vanishes ( m~ t ): 

𝑖

2
 {𝜓1𝜕 𝜓1 + 𝜓2𝜕𝜓2 +𝑚 𝜓1𝜓2} 



Conformal Field Theory 

What this result implies is that in the scaling 
limit any critical, unitary … statistical physics 
model will correspond to a conformally invariant 
field theory (CFT)  



Field operators 

Under conformal transformations 𝑧 → 𝑤 𝑧 , all field 
operators must be representations of the Virasoro 
algebra. 

 

Under a conformal transformation field operators 
transform as  

 

𝜑(𝑤,𝑤)  → (
𝜕𝑤

𝜕𝑧
)−ℎ (
𝜕𝑤

𝜕𝑧
)−ℎ 𝜑(𝑧, 𝑧) 



Conformal Field Theory - CFT 

These are called quasi-primary fields. The 

conformal weights ℎ and ℎ are related to the 
scaling dimension D and spin s:  

  

                    ℎ = 1
2
Δ+𝑠          ℎ=

1

2
Δ−𝑠    

   



2,3 point functions 

𝜑ℎ1(𝑧1)𝜑ℎ2(𝑧2) =
𝛿ℎ1,ℎ2
𝑧1−𝑧2

ℎ1+ℎ2
  

 

𝜑ℎ1(𝑧1)𝜑ℎ2(𝑧2)𝜑ℎ3(𝑧3) =
𝐶123

𝑥12
𝑎𝑥23
𝑏𝑥31
𝑐
 

𝑎 = ℎ1 + ℎ2 − ℎ3,… 
𝑥12 = 𝑧1 − 𝑧2,… 

 

 



4 point function 

Four point function is 
𝜑ℎ1(𝑧1)𝜑ℎ2(𝑧2)𝜑ℎ3(𝑧3)𝜑ℎ4(𝑧4)

= 𝑓(𝜂) 𝑥𝑖𝑗
ℎ
3−ℎ𝑖+ℎ𝑗

𝑖<𝑗

 

 
ℎ = ℎ1 + ℎ2 + ℎ3 + ℎ4 

The only independent cross ratio is; 

𝜂 =
𝑥12𝑥34
𝑥13𝑥24

 



4 point function 

• Symmetry does not determine the function 
𝑓(𝜂) 

• To do so we need to specify the exact CFT we 
are dealing with then f satisfies a hyper-
geometric function which is actually the 
expression of a null state 



Minimal series 

𝑐 = 1 −
6

𝑚 𝑚+1
 , 𝑚 = 2,3, . .  

 

𝜑𝑝,𝑞   has conformal dimensions: 

 

ℎ𝑝,𝑞 =
( 𝑚+1 𝑝−𝑚𝑞)2−1

4𝑚(𝑚+1)
,  1 ≤ 𝑝 ≤ 𝑚 − 1 , 1 ≤ 𝑞 ≤ 𝑝  



Minimal Series 

Other low lying CFT’s in the minimal series are: 
 

Table 1: Low lying CFT's and corresponding critical models in 2d. 

m c Statistical model 
3 1/2 Ising model 
4 7/10 Tricritical Ising model 
5 4/5 3-state Potts model 
6 6/7 Tricritical 3-state Potts model 

 



Question  

Can you write a neural net that 

1. Decides if an image is a fractal 

2. Decides if it is a 3-D fractal or 2-D fractal 

3. Calculates the fractal dimension. 

https://aboveintelligent.com/what-do-deep-
neural-networks-understand-of-fractals-
2ae354911601 
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